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Abstract. The spectra of two-hole and two-electron excitations are calculated for a single- 
band Hubbard Hamiltonian. These spectra are directly connected with the intensity of CVV 
Auger spectra and with the appearance potential spectra of transition metals with strong 
electron-electron interactions. The theory is based on a local decoupling procedure applied 
to the retarded two-particle double-time Green functions in the site representation. It is 
exact in four important limiting cases: in the non-interacting limit (U-. 0), in the atomic 
limit (band width W* 0), in the limit of low concentration of electrons (n-. 0) and holes 
(n-. 2), and it provides a physically reasonable interpolation between these limits. In 
contrast with previous similar theories, it has proper transformation properties under the 
electron-hole transformation. The theory is illustrated numerically in a simplified model. 

1. Introduction 

The spectrum of two-particle excitations in systems of correlated electrons is an impor- 
tant quantity that determines many physical properties of these systems. Particularly, 
the intensity of the CVV Auger spectrum is proportional to the density of the two-hole 
excitations below the Fermi level in the valence band. Similarly, the appearance potential 
spectra are connected with the density of the two-electron excitations above the Fermi 
level in the valence band. 

For systems with completely filled, or empty bands, an exact solution (sometimes 
called Kanamori’s solution, Kanamori 1963) is possible (see also Beeby 1967, and Drchal 
and Velicky 1976). This theory was employed by Cini (1976) and by Sawatzky (1977) to 
explain the CVV Auger spectra of transition metals, and by Drchal and Velicky (1976) 
in studies of the electronic structure of disordered alloys. However, most transition 
metals have partially filled d-bands. In this case, various approximate treatments were 
used: 

(i) Perturbation theory. The two-particle Green function (GF) was constructed as a 
sum of ladder graphs, the one-particle propagators in the ladder were calculated either 
within second order (in UIW, where U is the strength of electron-electron interactions 
and W is the band width) perturbation theory (Trkglia et a1 1981), or within the non-self- 
consistent T-matrix approximation (NSC-TMA) (Penn 1979, Cini 1979). The validity of 
the second-order theory is limited to weak pair interactions (U/W small). The NSC-TMA 
is valid for very low particle concentrations and, of course, also for weak pair interactions 
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at arbitrary particle concentrations. Considerable improvements were made when the 
self-consistency was introduced into the TMA (SC-TMA) (Babanov et a1 1971, 1973a, b, 
Drchall979, Drchal and Kudrnovskjl1984). The validity of the SC-TMA is still limited to 
low particle concentrations, not exceeding 0.3 per one spin sub-band (Caron and 
Kemeny 1971). 

(ii) The cluster approach (Cini and Verdozzi 1987) is based on the configuration 
interaction (CI) method applied to a finite cluster (containing, say, 125 atoms) and it 
yields very accurate and reliable results. However, with increasing number of holes, the 
dimensionality of the configurational space increases very rapidly. Consequently, the 
method can be efficiently used only for systems with low concentration of particles 
(either holes or electrons). 

(iii) Decoupling procedures are used to simplify the higher-order GF entering the 
equation of motion for double-time GF. Presilla and Sacchetti (1987) employed an RPA- 
like pairing in k-space in their study of the multi-band Hubbard-type Hamiltonian. This 
approximation, however, behaves incorrectly at the electron-hole symmetry operation. 
In the present work an alternative approach based on the decoupling in the site rep- 
resentation is developed, which eliminates this drawback. 

2. Theory 

The two-particle excitation spectrum of the single-band Hubbard Hamiltonian 

H = tija&aj, + U x  U:? ai? U:& U ~ J  
iio i 

can be studied using the two-particle double-time retarded GF: 

G($w t> = ( - i>w>(~wLr ( t b , ?  (9, a i r  4 IIYf) (2) 

where O ( t )  is the Heaviside step function (e(t) = 1 for t > 0; e(t) = 0 otherwise), and 
IYf) is the ground state of H with M particles. The Fourier transform of this GF 

G(ijlm, z> = dtexp(izt)G(ijlm, t)  I-: (3) 
G(ijlm, t)  = -exp(-iwt)G(ijlm, w )  I-: :: 

is holomorphic in the upper half-plane of complex energy z (Im z > 0). It can easily be 
shown that the spectral representation of the superdiagonal element Go@) = G(OOO0, z )  
is given by 

where 
wM+2 = 

a 

and E:, 

(Yf+’i~Jr U$& lY f ) )*  ~ f - ~  = I(Yf-’laoL any 1 ~ f ) I ’  ( 5 )  

Y :) are the eigenvalues and eigenvectors of Hamiltonian (1) corresponding 
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to states of M electrons. In metallic systems with Fermi level p ,  equation (4) can be 
simplified using the positive excitation energies o 

ff (6) ~ M i 2  -EM = O M i 2  ff + 2p E# - = 2 , ~  - of-’. 
0 P 

The spectral density 

A(E)  = - n-’ Im Go(E  + io) (7) 

has two branches: for E > 2p (the first term in (4)) it corresponds to the two-electron 
excitations (appearance potential spectra), and for E < 2p (the second term in (4)) it 
corresponds to the two-hole excitations (CVV Auger spectra). 

The GF G(ijlm, z )  obeys the equation of motion 

z G(ijlm, z )  = p(ijlm) + 2 tjnG(inlm, z )  + tj,G(njlnz, z )  
n n 

where 

~ ( i j l m )  = ( y t Y / [ a i t a , J  7 a L ~ a t $ I I ~ f ) = 6 i / f i , m  - s!,(~:,ait>-d,l(aLsa,~) (9) 

and n,, = a ~ a , , .  We shall approximate the higher-order GF r(ijlm, z )  on the RHS of 
equation (8) using the decoupling 

(10) r(ijlm, z> = ( ( ( n , ~  + nI T >a, T a, J la: 1 a& )) = (n ,  I + n, r ) G ( i j h  z )  

which corresponds to the local effective-medium approximation for the two-particle 
states. We assume that the ground state IYf) is translationally invariant. Then (n,,) = 
(n,:) and (n, + n, ? )  = n,  n being the concentration of electrons (0 C n C 2, n = M / N ,  
N is the number of sites). The equation of motion (8) then simplifies to the form 

( z  - Un)G(ijlm, z )  = p(ijlm) + t,,G(inim, z )  
n 

+ 2 tinG(njlnz, z ) +  U(l -n)djjG(ijlm, z ) .  
n 

Equation (1 1) represents an inhomogeneous system of linear equations for the unknown 
quantities G(ijlm, z ) .  This system can be solved using the exact Kanamori’s solution of 
the two-particle problem (see, e.g., Beeby 1967, Drchal and Velickjl 1976): 

The superdiagonal element G0(z)  of the GF is 

1 1 l -nkt  - n q ;  
= 9 1 - W o ( k  + q ,  5) 5: - E(k) - E(q)  
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where 

is the unperturbed two-particle propagator, nko = (akouko) is the average occupancy of 
the one-electron Bloch state (ka), 

E = z - U n  (15) 

V =  U(l - n )  (16) 

is the renormalised energy, 

is the renormalised strength of the pair interaction, 

1 
N im 

E ( k )  = - 2 exp[ -ik(R, - Rm)]t,m 

is the dispersion law of the unperturbed one-particle energy band, and the summations 
in (12), (13) and (14) run over the first Brillouin zone. 

In order to evaluate the accuracy of our solution we compare it with the exact results 
that may be found in some special cases. 

(a) In the non-interacting limit ( U  = 0), expression (13) gives the exact result 

1 1 - n k t  - n , ~  
G o ( z )  = XFF 2 - E(k)  - E(q) '  

This also followsdirectly from the equation of motion (8), in whichr(zjlm, z )  is multiplied 
by U. Therefore, for U = 0, equation (8) holds exactly even if the decoupling (10) yields 
an incorrect result for r(ijlm, z ) .  

( b )  In the atomic limit ( E ( k )  = 0 for all k ) ,  formula (13) gives the exact result 

G o ( z )  = (1 - n ) / ( z  - U )  (19) 

which can also be derived from (8), since the decoupling (10) gives exact expression for 
r(ijlm, z )  in this limit. 

(c) Formula (13) yields the exact result, identical to Kanamori's solution, in the limit 
of low concentration of electrons ( n  + 0) 

because the decoupling (10) gives an exact value of r, r(ijlm, z )  = 0. 

again exact, giving 
(d) Similarly, in the limit of low concentration of holes ( n  + 2), expression (13) is 

where 

This also follows from (lo),  since it gives exact result r(ijlm, 2) = 2G(ijlm, z ) .  
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(e) It can be shown that solution (13) behaves correctly at the electron-hole trans- 
formation. It transforms according to the exact relation (cf. Mertsching 1977) 

G,(U, n,  [ W l ,  2) = G,(K 2 - n ,  [--W)l, 2 U - 2 ) .  (23) 

The approximation derived by Presilla and Sacchetti (1987) is exact only in cases (a), 
(b )  and (d),  but not in (c) and (e), because it violates the electron-hole symmetry 
requirements. This can be seen from the single-band version of the Presilla and 
Sacchetti’s result, which reads in our notation as 

(24) 
1 1 1 - n q  -n,i 

Go(z) = 9 1 - ( k  + q, 2 )  2U - 2 + E(k)  + E(q) ’ 

This resembles our result (13), except that renormalisation of energy, and, more impor- 
tant, the renormalisation of the interaction strength is missing. On the other hand, the 
ladder approximation combined with the T-matrix approximation is correct in cases (a), 
(c)-(e). In the atomic limit (case b)  it is correct only for n = 0 and n = 2. 

Expression (13) is an explicit compact formula for the two-particle, single-site GF. It 
can be directly used for calculation of the Auger intensity. It has very simple structure: 
the quantities in the denominator have purely two-particle character since they come 
from the exact (Kanamori’s) solution of the two-particle problem, but the energy 5- and 
the pair interaction Vare renormalised quantities. On the other hand, the expression in 
the numerator is purely of one-particle nature as it contains the information on the 
occupancy of the one-particle states in the system of correlated electrons. 

The occupation numbers nkocan be calculated from the one-particle GF. Our theory, 
however, gives no prescription how to determine the one-particle GF. We are therefore 
free to choose a suitable approximation scheme for evaluation of the one-particle GF. 
Of course, it would be desirable to determine the one-particle GF consistently with the 
approximate form of the two-particle GF following the method proposed by Baym and 
Kadanoff (1961) for construction of conserving approximations. This seems hardly 
possible in our scheme because the double-time, two-particle GF considered here has 
no direct connection with the one-particle GF. The reason is that the two-particle GF 
calculated in our theory depends on the time variables as G(t, t ,  0, 0), while for the 
calculation of the one-particle self-energy a different type of GF, namely G(t, t ,  t, 0), is 
necessary. 

On the other hand, the occupation numbers are rather insensitive to the fine details 
of the one-particle GF, except a finite jump at the Fermi momentum kF,  which follows 
from the Luttinger’s (1961) theorem. Therefore, it seems that even rough approxi- 
mations for the one-particle GF that fulfil Luttinger’s theorem can yield the two-particle 
GF with good accuracy. 

The renormalised energy 5- (15) and the effective strength of pair interaction V (16) 
are used to describe the form of the two-particle GF (13). These quantities can be 
interpreted as follows. The energy shift Un that enters (15) is a sum of the one-particle 
Hartree-Fock self energies for a pair of electrons: Un = Un + Un . In order to explain 
the physical meaning of the effective interaction V = U (1 - n) ,  we start from the 
definition (2) of the two-particle GF (i = j = 1 = m = 0), and for simplicity, we consider 
the two-electron excitationsonly. At timet = 0, we create a pair of partideswith opposite 
spins on the atom at the origin, and after time t we look for the probability amplitude of 
finding a pair of particles at the same site. In systems with low particle concentrations 
(n l ) ,  the evolution of a pair of particles created at the origin is governed mainly by 
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the bare repulsion U ;  they move freely on the lattice except that they tend to avoid each 
other. The two-particle GF is given by Kanamori’s solution, and V = U. The situation 
changes with increasing particle concentrations. For the almost filled band (2 - n * l), 
the pair of particles created at the origin is bounded to stay there because all the 
neighbouring sites that can be reached by hopping are fully occupied. Due to the Pauli 
principle neither of two particles created at the origin can move to this neighbourhood. 
This situation is described by an effective interaction of attractive type, V = - U. In the 
intermediate case (half-filled band, n = 1 )  the bare repulsion U and the effects of the 
Pauli exclusion principle compensate each other: the particles behave as if they were 
free and the effective interaction V goes to zero. We note that in the atomic limit, the 
two-particle GF (19) is expressed via the energy z and the bare interaction U .  This could 
lead to an incorrect conclusion that the renormalised quantities are inapplicable in this 
case. Of course, it is not so, because equation (19) can be rewritten as Go(z) = (1  - n) /  
( 5  - VI. 

3. A simplified model 

To illustrate our theory numerically we introduce a simplified model. We assume that 
the dispersion law E(k)  corresponds to the semi-elliptic density of states 

g ( E )  = 2 / 4 1  - E2)1/26(1 - E 2 )  (25) 
we employ the so-called scaling factor approximation that has been successfully used in 
numerical calculations of the two-particle spectra of metals and alloys (Drchal and 
Velickq 1976, Drchal and Kudrnovskg 1982) and a related interpolation approximation 
for the occupation numbers 

E ( k - q ) + E ( q )  = [2(1 -E(k))]”(q-&k) (26a) 

n q - k , u  +nq,o Z= 2nq-$k.u.  (26b) 

nku = 6[,u - &Un - E ( k ) ] .  (27) 

We approximate the one-particle occupation numbers by their Hartree-Fock values 

Then (13) simplifies to a two-dimensional integral over energy variables 

The integration over y can be done analytically. It yields the one-dimensional integral 

P ” G o ( Z )  = - j d x  1 - x  - v[g - (8 - 2 + 2x)i] ([2(1 - x p 2  
V 5 l  ( 1  -x ) ( l+x) l /2  

- 1  

where 
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Figure 1. Localisation of the two-particle spectrum cal- 
culated within the simplified model. The lines V = con- 
stant intersect the regions shown to give the bounds of 
the two-particle spectrum. 5 

and y o  = p - 1Un. Expression (29) is evaluated numerically with the help of the ana- 
lytical deconvolution technique (Hass et a1 1984). 

The formula (13) for the two-particle GF is simple enough that direct evaluation 
without additional approximations (i.e., using realistic band structure E(k) ,  full six- 
dimensional integration over the k-space and more realistic approximation for the one- 
particle occupation numbers nko than Hartree-Fock) is also possible. 

4. Results and discussion 

It may be shown by inspection of formula (28) that the density of the single-site, two- 
particle states is non-zero for 5 from the interval (-2,2) if I VI < 1 and for 5 lying inside 
the union of intervals (-2,2) U (V ,  V + V-')  if IVI > 1 (see figure 1). The interval 
(-2, 2) corresponds to the main band, and the interval (V ,  V + V-')  to the split-off 
band. With increasing /VI an increasing number of states belongs to the split-off band, 
whose width ( 1  VI-') decreases. The renormalised pair interactions V may be either 
positive or negative, depending on the particle concentration n. Therefore two split-off 
bands are found, one above the main band (for V > l), and the other below the main 
band (for V < - 1). The energy 5 = 2p separates the two-electron states from the two- 
hole states. A detailed discussion of the bounds of the two-particle spectrum relevant to 
our simplified model may be found elsewhere (Drchal and Velickf 1976). 

The densities of the single-site, two-particle states calculated for the simplified model 
are presented in figures 2 and 3. We have selected the parameters U and n to show the 
main features of the two-particle spectra: 

(1) With increasing strength of the pair interaction U at constant particle con- 
centration n (figure 2) the originally band-like spectrum gradually changes into an 
atomic-like one. 

(2) Varying filling n of the valence band at a constant strength of the pair interaction 
U (figure 3) has the following effects: (a)  with increasing particle concentration n the 
number of two-hole excitations increases, while the number of two-electron excitations 
decreases; (b)  the correlation effects are strongly suppressed for n close to 1, as follows 
from (16); and (c) the spectra for the conjugated particle concentrations n and 2 - n are 
related by the electron-hole symmetry (equation (23)). 
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Figure 2. Density of the two-hole (full curves, 

two-electron excitations (dotted lines corres- 

calculated within the simplified model for con- 
stant electron concentration n = 1.5 and varying 
the strength of the pair interaction U. The unper- 
turbed one-electron band width is W = 2. 
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The most important feature of the present theory is the renormalisation of the strength 
of pair interaction (equation (16)). It ensures a correct behaviour at the electron-hole 
transformation. Moreover, it has important consequences for the interpretation of 
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the Auger spectra. The theory based on the assumption of low hole concentration 
automatically connects the atomic-like or band-like character of the CVV Auger spectra 
with the strong or weak intra-atomic Coulomb interaction, respectively. It also makes 
the conclusion that this interaction is weak for metals in the middle of the 3d series (Mn, 
Fe, CO). The situation is more complex, however. Direct calculations of the Coulomb 
integrals for these metals (see Mann 1967) yield lower values (approximately 22-25 eV), 
but which are still comparable with those for Ni or Cu (approximately 26 eV). The 
contact pair interaction in the Hubbard Hamiltonian is related to the Coulomb integrals, 
but it is not identical, due to the screening effects. Finding reliable values of the Hubbard 
U is a difficult task and it was believed that the value of U is directly connected with the 
shape of the CVV Auger spectrum. Our theory shows, however, that the character of 
the Auger spectrum is governed by the renormalised pair interaction V = U (1 - n)  
instead of the bare interaction U. 

5. Conclusions 

We have developed a new approximate theory of the two-particle excitations for the 
single-band Hubbard model. It can be used in studies of the CVV Auger spectra and the 
appearance potential spectra of metals with incompletely filled narrow bands. The 
theory is based on the local decoupling scheme applied to the two-particle, double-time 
GF which corresponds to an effective-medium approximation in the space of the two- 
particle states. It yields correct results in important limiting cases for which an exact 
solution is known. Its main limitation is that it includes only one band. It can be 
generalised, however, to the multi-band case (Kotrla and Drchall989). For simplicity, 
it was formulated for T = 0; but extension for the case T > 0 is straightforward. The 
most remarkable feature of the present theory is perhaps that it gives, for the first time, 
an explicit formula (16) for the strength of renormalised pair interaction which describes 
well, at least on qualitative level, the dependence of the two-particle spectra on the 
particle concentration. A detailed comparison of our theory including the multi-band 
case with other theoretical methods and with the experimental Auger and APS spectra 
of transition metals is now in preparation. 
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